

# Reducing the L-H Transition Power Threshold in ITER-Similar-Shape DIII-D Hydrogen Plasmas

L. Schmitz<sup>1</sup>, R.S. Wilcox<sup>2</sup>, D. Shiraki<sup>2</sup>, T.L. Rhodes<sup>1</sup>, Z. Yan<sup>3</sup>, G.R. McKee<sup>3</sup>, K. Callahan<sup>1</sup>, Y. Liu<sup>2</sup>, T. Osborne<sup>4</sup>, L. Zeng<sup>1</sup>, S.R. Haskey<sup>5</sup>, C. Chrystal<sup>4</sup>, B. Grierson<sup>5</sup>, F. Laggner<sup>5</sup>, C. Paz-Soldan<sup>4</sup>, N. Leuthold<sup>4</sup>, B. Lyons<sup>4</sup>, P. Gohil<sup>4</sup>, C.C. Petty<sup>4</sup>

<sup>1</sup>University of California Los Angeles, Los Angeles, CA 90095-7799, USA

<sup>2</sup>Oak Ridge National Laboratory, Oak Ridge, TN 37831-0117, USA

<sup>3</sup>University of Wisconsin-Madison, Madison, WI 53706, USA

<sup>4</sup>General Atomics, PO Box 85608, San Diego, CA 92186-5608, USA

<sup>5</sup>Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451, USA

Recent experiments in electron-heat-dominated, low-torque, ITER-similar-shape (ISS) hydrogen plasmas ( $q_{95} \sim 3.6$ ) show that the L-H transition power threshold  $P_{LH}$  can be reduced substantially (~25-30%) with moderate Helium trace injection (helium ion fraction  $n_{He}/n_H \leq 25\%$  during the ensuing H-mode). Without mitigation, the power threshold was increased by a factor of ~3 compared to reference deuterium ISS plasmas due to the significant edge electron heat flux [ $Q_e(\rho=0.95)/Q_i(\rho=0.95)=1.2-2$ ]. Hydrogen ISS plasmas with increased edge safety factor  $q_{95} \sim 5$  exhibited a significantly lower power threshold, an observation not accounted for by the commonly used multi-machine threshold scaling [1] (a dependence of  $P_{LH}$  on  $q_{95}$  was observed in deuterium ISS plasmas only at mid-density [2]). In co-injected plasmas,  $P_{LH}$  increased with neutral beam torque as previously observed in DIII-D deuterium plasmas.

Techniques for reducing  $P_{LH}$  are very important for ITER, in particular for hydrogen plasma operations during the PFPO-1 campaign with marginal auxiliary heating (20-30 MW of ECH). We report here also new observations that  $P_{LH}$  can be effectively reduced at low ion edge collisionality via applied  $n=3$  Non-Resonant Magnetic Perturbations (NRMP), producing local edge counter-current torque via the Neoclassical Toroidal Viscosity (NTV) at the plasma edge, consistent with linear plasma response simulations. CER measurements show a substantial increase in toroidal (Carbon) edge rotation shear with applied NTV before the L-H transition. Initial evidence indicates that  $E \times B$  flow shear inside the LCFS increases due to increased radial shear in the  $v_\phi B_\theta$  term in the radial ion momentum balance, reducing the L-H transition power threshold. These results contrast with the increased L-H power threshold observed with applied  $n=3$  Resonant Magnetic Perturbations (RMP) in DIII-D, ascribed to edge stochasticization due to island overlap, and reduced Reynolds stress [3,4].

Control of L-mode  $E \times B$  shear via Helium seeding, or applied NRMP/NTV can open up a path for reducing  $P_{LH}$  in burning plasma experiments. For example, the ITER 3-D internal coil set can be used to generate large NTV in the edge plasma layer, favored by the relatively low collisionality expected in the ITER L-mode edge.

This work was supported by the US Department of Energy under DE-FG02-08ER54984<sup>1</sup>, DE-AC05-00OR22725<sup>2</sup>, DE-FG02-08ER 54999<sup>3</sup>, DE-FC02-04ER54698<sup>4</sup>, and DE-AC02-09CH11466<sup>5</sup>.

[1] Martin et al., J. Phys. Conf. Series **123** 012033 (2008); [2] Z. Yan et al., Phys. Plasmas **26**, 062507 (2019)

[3] L Schmitz et al., Nucl. Fusion **59** 126010 (2019); [4] M.L. Kriete et al., Phys. Plasmas **27** 062507 (2020).